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Abstract. Unlike traditional reinforcement learning (RL), market-based
RL is in principle applicable to worlds described by partially observable
Markov Decision Processes (POMDPs), where an agent needs to learn
short-term memories of relevant previous events in order to execute opti-
mal actions. Most previous work, however, has focused on reactive settings
(MDPs) instead of POMDPs. Here we reimplement a recent approach to
market-based RL and for the first time evaluate it in a toy POMDP setting.

1 Introduction

One major reason for the importance of methods that learn sequential,
event-memorizing algorithms is this: sensory information is usually insuffi-
cient to infer the environment’s state (perceptual aliasing, Whitehead 1992).
This complicates goal-directed behavior. For instance, suppose your instruc-
tions for the way to the station are: “Follow this road to the traffic light,
turn left, follow that road to the next traffic light, turn right, there you are.”
Suppose you reach one of the traffic lights. To do the right thing you need
to know whether it is the first or the second. This requires at least one bit
of memory — your current environmental input by itself is not sufficient.
Any learning algorithm supposed to learn algorithms that store relevant
bits of information from training examples that only tell whether the cur-
rent attempt has been successful or not — this is the typical reinforcement
learning (RL) situation — will face a major temporal credit assignment
problem: which of the many past inputs are relevant (and should be repre-
sented in some sort of internal memory), which are not? Most traditional
work on RL requires Markovian interfaces to the environment: the current
input must provide all information about probabilities of possible inputs
to be observed after the next action, e.g., [15,16]. These approaches, how-
ever, essentially learn how to react in response to a given input, but cannot
learn to identify and memorize important past events in complex, partially
observable settings, such as in the introductory example above.
Several recent, non-standard RL approaches in principle are able to deal
with partially observable environments and can learn to memorize cer-
tain types of relevant events [7,8,6,3,9,10,13,18,17,14]. None of them, how-
ever, represents a satisfactory solution to the general problem of learn-
ing in worlds described by partially observable Markov Decision Processes
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(POMDPs). The approaches are either ad hoc, or work in restricted do-
mains only, suffer from problems concerning state space exploration versus
exploitation, have non-optimal learning rate or have limited generalization
capabilities. Most of these problems are overcome in [5] but the model is yet
computationally intractable. Here we consider a novel approach to POMDP-
RL called market-based RL which in principle does not suffer from the lim-
itations of traditional RL. We first give an overview of this approach and
its history, then evaluate it in a POMDP setting, and discuss its potential
and limitations.

2 Market-based RL: History & State of the Art

Classifier systems. Probably the first market-based approach to RL is em-
bodied by Holland’s Classifier Systems and the Bucket Brigade algorithm
[4]. Messages in form of bitstrings of size n can be placed on a global mes-
sage list either by the environment or by entities called classifiers. Each
classifier consists of a condition part and an action part defining a message
it might send to the message list. Both parts are strings out of {0, 1, }n

where the ‘ ’ serves as a ‘don’t care’ if it appears in the condition part.
A non-negative real number is associated with each classifier indicating its
‘strength’. During one cycle all messages on the message list are compared
with the condition parts of all classifiers of the system. Each matching clas-
sifier computes a ‘bid’ based on its strength. The highest bidding classifiers
may place their message on the message list of the next cycle, but they
have to pay with their bid which is distributed among the classifiers ac-
tive during the last time step which set up the triggering conditions (this
explains the name bucket brigade). Certain messages result in an action
within the environment (like moving a robot one step). Because some of
these actions may be regarded as ’useful’ by an external critic who can give
payoff by increasing the strengths of the currently active classifiers, learning
may take place. The central idea is that classifiers which are not active when
the environment gives payoff but which had an important role for setting
the stage for directly rewarded classifiers can earn credit by participating
in ‘bucket brigade chains’. The success of some active classifier recursively
depends on the success of classifiers that are active at the following time
ticks. Bankrupt classifiers are removed and replaced by freshly generated
ones endowed with an initial amount of money.

PSALMs. Holland’s approach suffers from certain drawbacks though. For
instance, there is no credit conservation law — money can be generated out
of nothing. Pages 23-51 of [11] are devoted to a more general approach called
Prototypical Self-referential Associating Learning Mechanisms (PSALMs).
Competing/cooperating agents bid for executing actions. Winners may re-
ceive external reward for achieving goals. Agents are supposed to learn the
credit assignment process itself (meta-learning). For this purpose they can
execute actions for collectively constructing and connecting and modifying
agents and for transferring credit (reward) to agents. PSALMs are the first
systems that enforce the important constraint of total credit conservation



(except for consumption and external reward) - this constraint is not en-
forced in Holland’s classifier economy, which may cause money inflation and
other problems. PSALMs also inspired the money-conserving Neural bucket

brigade, where the money is ”weight substance” of a reinforcement learning
neural net [12].

Hayek machines [1] are designed to avoid further loopholes in Holland’s
credit assignment process that may allow some agent to profit from actions
that are not beneficial for the system as a whole. Property rights of agents
are strictly enforced. The current owner of the right to act in the world
computes the minimal price for this right, and sells it to the highest bidder.
Agents can create children and invest part of their money into them, and
profit from their children’s success. Wealth and bid of an agent are separate
quantities. All of this makes Hayek more stable than the original bucket
brigade. There have been impressive applications — Hayek learned to solve
complex blocks world problems [1]. Hayek is reminiscent of PSALM3 [11],
but a crucial difference between PSALM3 and Hayek may be that PSALM3
does not strictly enforce individual property rights. For instance, agents may
steal money from other agents and temporally use it in a way that does not
contribute to the system’s overall progress.

3 The Hayek4 System

We briefly describe our reimplementation of Hayek4 [2] — the most recent
Hayek machine variant. Unlike earlier Hayek versions, Hayek4 uses a new
representation language.

Economic model. Hayek4 consists of a collection of agents that each have
a rule, a possible action, a wealth and a numerical bid. The agents are
required to solve an instance of a complex task. But because each agent can
only perform a single action, they need to cooperate. In a single instance,
computation proceeds in a series of auctions. The highest bidding agent
wins and “owns” the world, pays an amount equal to its bid to the previous
owner and may then perform its action on the world. The owner of the world
collects any reward from it, plus the payment of the next owner. Only if
the actual revenue is larger than its bid, an agent can increase its wealth.

Birth, death and taxes. Agents are allowed to create children if their
wealth is larger than some predetermined number (here 1000). Parents en-
dorse their offspring with a minimum amount of money which is subtracted
from their wealth, but in return parents receive a share c of their children’s
future profit. Children’s rules are randomly created, copied or mutated from
their parents with probabilities pr, pc and pm, respectively. See Table 1 for
their numerical values.
By the definition of wealth, birth processes automatically focus on rather
successful agents. To improve efficiency, after each instance all agents pay a
small amount of tax proportional to the amount of computation time they
have used. To remove unuseful agents, earlier Hayek versions required agents
to pay a small fixed amount of tax; agents without money were removed
from the system. Hayek4 removes them once they have been inactive for
the last, say, 100 instances.



symbol value description
W 10.0 Baum and Durdanovic’s W parameter
R 100.0 reward value
ǫ 0.01 children always bid this amount higher than highest bid
u 0.25 increase level if (1-u) instances are solved; decrease if less than u.
t 1e-3 execution tax
c 0.25 copyright share
m 0.5 mutation ratio
pr 0.3 probability of random rule for new child
pc 0.3 probability of copying rule for new child
pm 0.3 probability of mutation of rule for new child

Table 1: Parameter settings for our Hayek4 reimplementation. For a detailed explanation see [2].

Post production system. The agents in Hayek4 are essentially a Post pro-
duction system. Baum and Durdanovic argue that this provides a richer
representation than the S-expressions in earlier Hayek versions because Post
systems are Turing complete (like the representation used by PSALMs [11]).
Each agent forms a Post rule of the form L → R where L is the antecedent
(or rule) and R is the consequent (the action). The state is encoded in a
string S; the agent is only allowed to perform R when L matches string S.
This procedure is iterated until no rules match, and computation halts.

4 Implementation

We found Hayek4 rather difficult to reproduce. Several parameters require
tuning — making Hayek stable still seems to remain an art. Parameter
settings of our Hayek system are summarized in Table 1; for a detailed
explanation see [2]. For small task sizes our program tends to find reliable
solutions, but larger sizes cause stability problems, or prevent Hayek4 from
finding a solution within several days.
We tried to reimplement Hayek4 as closely as possible, except for certain
deviations justified by improved performance or implementation issues:

– Single rule: instead of agents having multiple rules, we allowed only one
rule per agent.

– Fixed reward: instead of paying off reward proportional to the size of
the task, we used a fixed reward of 100.

– TD backup: we additionally applied time differential (TD) [15] backup of
the agent’s bid, as traditionally done in reinforcement learning systems,
to accelerate convergence.

Blockworld. Baum and Durdanovic reported a set of Hayek agents that
collectively form a universal solver for arbitrary blockworld problems [2]
involving arbitrarily high stacks of blocks. The set consists of five rules
listed in the table below.
We tested Hayek4 by first hardwiring a system consisting of those five so-
called universal agents only. Indeed, it reliably generated stacks of increasing
size, reaching stack level 20 within 800 instances, and level 30 within 1000
instances. Figure 2 shows a typical run resulting in a stack of height=4.
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Fig. 1: Example of Blockworld instance with
stack height=6. The objective is to replicate in
stack 1 the color sequence represented by the
blocks in stack 0, by moving blocks between stacks
1-3. Here the optimal next move would be to move
the top block of stack 2 to stack 1.

agent

world rule action bid

babc:cbb::a *:*:*:* 1→3 7.78

babc:cb::ab *:*:*:* 1→3 7.78

babc:c::abb *:*:*:* 1→3 7.78

babc:::abbc *.*:1:*:*2* 3→2 8.07

babc::c:abb *.*:1:*:*2* 3→2 8.07

babc::cb:ab *.*:1:*2:* 2→1 8.07

babc:b:c:ab *.*:1:*:*2* 3→2 8.07

babc:b:cb:a *.*:1:*:*2* 3→2 8.07

babc:b:cba: *.*:1:*2:* 2→1 8.07

babc:ba:cb: *.*:1:*2:* 2→1 8.07

babc:bab:c: *.:1:*2:* 2→1 35.80

babc:babc::

Fig. 2: A typical Blockworld solution for stack
height=4. Each colon-separated field of the world
string represents a stack of blocks of colors
{a,b,c}. The agent’s rule matches the world
string; “*” represents a “don’t care” symbol; num-
bers in the rule encode replacements of matched
substrings of stack 0. Actions move blocks be-
tween stacks 1, 2 and 3.

Then we switched on the creation of children but kept mutation turned off.
This caused Hayek to progress at a much slower pace, probably because
new children disrupt the universal solver as they always win the auctions
using the ǫ-bid scheme.

Problems. Unfortunately, our system was not able to find the universal
solver by itself. It typically reached stack size 5, but then failed to progress
any further. We believe that with increasing task size the system is encoun-
tering stability problems. Much remains to be done here.

5 Adding Memory to Hayek

Unlike traditional RL, market-based RL is in principle applicable to POMDPs.
Previous work, however, has usually focused on reactive settings (MDPs)
instead of POMDPs (see [19] for a notable exception though). Here we add
a memory register to the Hayek machine and apply it to POMDPs. The
memory register acts as a additional environmental variable that can be
manipulated by the agent using write actions.

Test problem. To study Hayek4’s performance on POMDPs, we focus on
one of the simplest possible POMDP problems. Figure 3 shows our toy
example which is an adapted version of Woods101 [3], a standard test case
for non-Markov search problems. Agents start in either of the two positions,
L or R, and have to reach the food at F . Agents have only limited perception
of their four immediate neighbouring positions north, east, south and west

plus the value of the memory register. Without memory, there is no Markov
solution to this problem because there are two aliased positions A and B

with identical environmental input where the optimal agent needs to execute
different actions: in A the optimal action is east ; in B the optimal action
is west. Note that the starting positions L and R are also aliased. However,
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Fig. 3: Woods101 is a partially observable environment; grey positions represent walls. Left: The agent
starts at one of the positions L or R and has to reach the food at F . The two aliased positions are A and
B. A 1-bit memory register is available for writing/reading. Right: the agent senses the four neigbouring
positions and the value of the memory register; here, for example, the agent might be either at A or at
B.

state agent
x y m rule action bid wealth
1 1 0 1:0:0:0:0 m1 100.00 119.51
1 1 1 1:*:*:0:1 n 100.00 184.04
1 2 1 *:*:1:0:1 m0 100.00 301.70
1 2 0 0:1:1:0:0 e 100.00 116.76
2 2 0 0:1:0:1:0 e 100.00 951.08
3 2 0 0:1:1:1:* s 100.00 103.52
3 1 0

state agent
x y m rule action bid wealth
1 1 1 1:*:*:0:1 n 100.00 185.01
1 2 1 *:*:1:0:1 m0 100.00 302.15
1 2 0 0:1:1:0:0 e 100.00 117.22
2 2 0 0:1:0:1:0 e 100.00 951.40
3 2 0 0:1:1:1:* s 100.00 103.51
3 1 0

Table 2: Two policies from starting position L=(1,1); auctions proceed from the first line downwards.
Left: the memory is set to m=1 before going north but again reset to m=0 before the aliased position
(2,2) is reached. Right: the memory is initially set to m=0 by a memory agent at (1,2). The first four
fields of the rule represent the bit values of north, east, south and west, respectively; the fifth field
matches the value of the memory register. Star (’*’) variables represent “don’t care” symbols.

in both L and R the optimal action is coincidentally the same (i.e. going
north).

Results. We ran Hayek4 on our test problem. After about 1000 instances
it learned a policy that solved the POMDP problem using a 1-bit memory.
In early instances the number of agents grew up to 1000 or more but fi-
nally only 8 agents remained. While the bids of all agents converged to the
actual reward value of 100, their wealth values varied considerably. Sample
histories of solved instances starting at L are shown in Table 2; histories of
solved instances starting at R are shown in Table 3.

The results can be summarized as follows. When an instance starts from L,
Hayek assures that the memory is set to 0 before it reaches aliased position
A. If the memory was initially set to m=1, a write agent sets the memory to
0; if the memory was already m=0, nothing is done. When the agent starts
from the right, the opposite occurs: before Hayek reaches aliased position B,
it checks if the memory bit is properly set to m=1. Now, two different agents
— with identical perception of the environment but different perception of
the memory — act at aliased positions A and B: an east agent at A if the
memory bit is 0, and a west agent if the memory is set to m=1.

Hayek also evolves one agent executing action south at sequence ends at
(3,2). It disregards the value of the memory by using the ‘*’-symbol (“don’t
care”). “Don’t care” symbols are useful to prevent unnecessary over-specia-
lization, i.e., we do not need two separate agents for each memory value. In
fact, such over-specialization occurred with the starting agent going north:



state agent
x y m rule action bid wealth
5 1 1 1:*:*:0:1 n 100.00 183.80
5 2 1 0:0:1:1:1 w 100.00 143.04
4 2 1 0:1:0:*:1 w 100.00 378.54
3 2 1 0:1:1:1:* s 100.00 103.52
3 1 1

state agent
x y m rule action bid wealth
5 1 0 1:0:0:0:0 m1 100.00 120.21
5 2 1 1:*:*:0:1 n 100.00 185.33
5 2 1 0:0:1:1:1 w 100.00 143.75
4 2 1 0:1:0:*:1 w 100.00 379.05
3 2 1 0:1:1:1:* s 100.00 103.50
3 1 1

Table 3: Two policies from starting position R=(5,1); auctions proceed from the first line downwards.
Left: the memory is initially set to m=1 and the agent proceeds directly north to F=(5,2). Right: the
memory was initially set to m=0 and a memory agent sets m=1 before proceeding north.

Hayek did not use a “don’t care” symbol for the memory register and there-
fore needed a extra memory agent (m1) if the bit was initially unset.

Discussion. This simple test problem shows that Hayek, in principle, is
able to solve POMDPs. More precisely, using a memory register, Hayek
“de-aliases” aliased positions in the POMDP by tagging these situations
before they actually occur. We note that the solution found by Hayek is
not unique: it does not matter whether it chooses to write a “0” or a “1”
for the left path, as long as the right path uses the complement. Once a
policy seems to perform well, Hayek converges toward this local optimum
and sticks to it.

Note that the found solution is nearly but not exactly optimal; an extra m1-
memory agent was necessary for the left policy in Table 2 because Hayek
was not able to generalize optimally in case of the agent going north, failing
to use a “don’t care” symbol for the memory value.

6 Conclusion

We have started to evaluate market-based RL in POMDP settings, focusing
on the Hayek machine as a vehicle for learning to memorize relevant events
in short-term memory. Using a memory bit register, Hayek was able to
distinguish aliased positions in a toy POMDP and evolve a stable solution.
The approach is promising, yet much remains to be done to make it scalable.
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